skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Kunal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Short-term microfiltration (MF) fouling is commonly abated by periodically reversing the flow to remove foulants that weakly adhered to the membrane. Strong oxidants (i.e., chlorine) can be added to hydraulic backwash water to augment its efficacy—a process called chemically enhanced backwashing (CEB). Herein, we report a rigorous mathematical model for constant flux MF incorporating hydraulic backwashing and CEB, and validate it with laboratory data obtained using untreated and alum-coagulated water from the Foss Reservoir in Oklahoma, USA. We implemented an optimal control procedure and used it to predict MF behavior long past experimental timescales. We identified a frequency threshold beyond which the necessary transmembrane pressure (TMP) reached an asymptotic value, indicating a pseudo steady-state, periodic solution to the model when coupling hydraulic backwashing with CEB. We report differences in TMP saturation values and timescales by simulating transient MF of untreated and pretreated water. Numerical simulations revealed that the operating flux could be increased 10-fold after pretreatment (compared with raw water) before reaching the maximum manufacturer-recommended pressure for the hollow-fibers. The predicted higher flux and extended duration between cleaning-in-place demonstrated advantages of coagulation pretreatment under hydraulic backwashing and CEB. Model observations could guide decision making for CEB timing and frequency. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Microfiltration is a widely used engineering technology for fresh water production and water treatment. The major concern in many applications is the formation of a biological fouling layer leading to increased hydraulic resistance and flux decline during membrane operations. The growth of bacteria constituting such a biological layer implicates the formation of a multispecies biofilm and the consequent increase of operational costs for reactor management and cleaning procedures. To predict the biofouling evolution, a mono-dimensional continuous free boundary model describing biofilm dynamics and EPS production in different operational phases of microfiltration systems has been well studied. The biofouling growth is governed by a system of hyperbolic PDEs. Substrate dynamics are modeled through parabolic equations accounting for diffusive and advective fluxes generated during the filtration process. The free boundary evolution depends on both microbial growth and detachment processes. What is not addressed is the interplay between biofilm dynamics, filtration, and water recovery. In this study, filtration and biofilm growth modeling principles have been coupled for the definition of an original mathematical model able to reproduce biofouling evolution in membrane systems. The model has been solved numerically to simulate biologically relevant conditions, and to investigate the hydraulic behavior of the membrane. It has been calibrated and validated using lab-scale data. Numerical results accurately predicted the pressure drop occurring in the microfiltration system. A calibrated model can give information for optimization protocols as well as fouling prevention strategies. 
    more » « less
  3. null (Ed.)